Duchenne muscular dystrophy--what causes the increased membrane permeability in skeletal muscle?
نویسندگان
چکیده
Duchenne muscular dystrophy is a severe muscle wasting disease caused by a mutation in the gene for dystrophin--a cytoskeletal protein connecting the contractile machinery to a group of proteins in the cell membrane. At the end stage of the disease there is profound muscle weakness and atrophy. However, the early stage of the disease is characterised by increased membrane permeability which allows soluble enzymes such as creatine kinase to leak out of the cell and ions such as calcium to enter the cell. The most widely accepted theory to explain the increased membrane permeability is that the absence of dystrophin makes the membrane more fragile so that the stress of contraction causes membrane tears which provide the increase in membrane permeability. However other possibilities are that increases in intracellular calcium caused by altered regulation of channels activate enzymes, such as phospholipase A(2), which cause increased membrane permeability. Increases in reactive oxygen species (ROS) are also present in the early stages of the disease and may contribute both to membrane damage by peroxidation and to the channel opening. Understanding the earliest phases of the pathology are critical to therapies directed at minimizing the muscle damage.
منابع مشابه
Mitochondrial Dysfunction in Duchenne Muscular Dystrophy
Muscular Dystrophy (MD) is an X-linked recessive disease affecting mainly boys at a rate of 1 in every 3500 live births. The most common and severe form of the disease is Duchenne Muscular Dystrophy (DMD). The disease is characterized by a relatively rapid wasting of skeletal muscle tissue to a point that leads to paralysis in all patients that suffer from the disease. Unfortunately, due to res...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملAltered Gene Expression Pathways in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is caused by the absence of functional dystrophin (Blake et al. 2002). Dystrophin is a cytoskeleton protein normally expressed in the inner face of the plasma membrane (Ahn and Kunkel 1993). In normal skeletal muscle, dystrophin is associated with a complex of glycoproteins known as dystrophin-associated proteins (DAPs), providing a linkage between the extracel...
متن کاملAbnormal Ion Homeostasis and Cell Damage in Muscular Dystrophy
Disruption of cytoskeletal organization caused by genetic defects in the components of the dystrophin-glycoprotein complex (DGC) results in muscular dystrophy and/or cardiomyopathy in human patients and animal models. Accumulating evidence obtained from studies by using skeletal muscle fibers, cultured myotubes, and cardiac muscle preparations from dystrophic animals suggest that defects in DGC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of biochemistry & cell biology
دوره 43 3 شماره
صفحات -
تاریخ انتشار 2011